

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

FK2-EU

The Norwegian EPD Foundation

Owner of the declaration:

TROX Group

Product: FK2-EU

Declared unit:

1 pcs

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core

NPCR 030:2021 Part B for ventilation components

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-5682-4950-EN

Registration number:

NEPD-5682-4950-EN

Issue date: 02.01.2024

Valid to: 02.01.2029

EPD Software:

LCA.no EPD generator ID: 61689

General information

Product

FK2-EU

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00

web: post@epd-norge.no

Declaration number: NEPD-5682-4950-EN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 030:2021 Part B for ventilation components

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs FK2-EU

Declared unit with option:

A1-A3,A4,C1,C2,C3,C4,D

Functional unit:

FK2-EU/200x200x500/Z43

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i integrated into the company's environmental management system, ii the procedures for use of the EPD tool are approved by EPD-Norway, and iii the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Alexander Borg, Asplan Viak AS

(no signature required

Owner of the declaration:

TROX Group

Contact person: Dirk Scherder Phone: +49 2845 2020

e-mail: productsustainability-de@troxgroup.com

Manufacturer:

TROX Group Heinrich-Trox-Platz 1

47506 Neukirchen-Vluyn, Germany

Place of production:

TROX GmbH - Werk Anholt

Gendringer Str. 85

46419 Isselburg, Germany

Management system:

ISO 9001, ISO 14001:2015, ISO 50001:2018

Organisation no:

DE 120250070

Issue date: 02.01.2024

Valid to: 02.01.2029

Year of study:

2022

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system and has been approved by EPD Norway.

Developer of EPD: Michael Weise

Reviewer of company-specific input data and EPD: Doeres Heuvens

Approved:

Håkon Hauan

Managing Director of EPD-Norway

Product

Product description:

For diverse applications.

Nominal sizes 200 x 100 - 1500 x 800 mm, can be ordered in increments of 1 mm.

For more informations see: https://www.trox.de/en/fire-dampers/fk2-eu-6a7ebbadc72c1037

Product specification

Fire damper that meets the requirements of the European product standard EN 15650, square or rectangular, with two large inspection accesses that can be opened without tools. Tested for fire resistance properties to EN 1366-2 (negative pressure of 300 Pa and 500 Pa), with CE marking. The fire damper manufacturer's declaration of performance (DoP) provides proof that a product is suitable for the respective installation conditions, e. g. in, on the face of and remote from walls or ceilings, with the stated essential characteristics such as size, supporting construction, construction and installation type, and that it has the corresponding class of performance to EN 13501-3.

The ready-for-operation unit includes a release mechanism and a replaceable, fire-resistant damper blade, which, depending on the application, can be either horizontal or vertical. Classification (depending on application):

El 30 (ve, ho i <-> o) S to El 240 (ve, ho i <-> o) S.

This EPD includes the environmental data of the product series FK2-EU.

The following represents a representative dataset of the most sold variant in the declared sales year (FK2-EU/200x200x500/Z43).

Materials	kg	%
Chemical	0,90	10,53
Fire-, heat- and UV-stabilizers	0,07	0,87
Glass fibre reinforced plastic, polyamide	0,09	1,07
Metal - Galvanized Steel	6,01	70,32
Metal - Stainless steel	0,06	0,66
Metal - Steel	0,12	1,45
Motor	1,20	14,04
Plastic	0,04	0,42
Plastic - Polyamide	0,00	0,02
Plastic - Polycarbonate (PC)	0,00	0,01
Plastic - Polyethylene terephthalate (PET)	0,03	0,35
Plastic - Polypropylene (PP)	0,01	0,07
Rubber, natural (Latex)	0,00	0,01
Rubber, synthetic	0,02	0,18
Total	8,55	

Packaging	kg	%
Packaging - Pallet	7,00	99,83
Packaging - Plastic	0,01	0,17
Total incl. packaging	15,56	

Technical data:

Nominal sizes (4): $200 \times 100 - 1500 \times 800$ mm.

Casing lengths: 305 and 500 mm.

Volume flow rate range: Up to 14400 l/s or 51840 m³/h.

Differential pressure range: Up to 2000 Pa. Temperature range (1, 3): -20 to 50 °C.

Release temperature: 72 °C or 95 °C (for warm air ventilation systems).

Upstream velocity (2): Standard construction = 8 m/s. construction with spring return actuator = 12 m/s.

construction with explosion-proof actuator ExMax/RedMax-15-BF TR = 10 m/s.

- 1 Temperatures may differ for units with attachments. Details for other applications are available on request.
- 2 Data applies to uniform upstream and downstream conditions for the fire damper.
- 3 Condensation and the intake of humid outdoor air have to be avoided as otherwise operation will be impaired or not possible.
- 4 Damper blade with lip seal for sizes 1 and 2, damper blade with travel stop seal for size 3.

Market:

Europe.

Reference service life, product

20-25 years.

Reference service life, building or construction works

60 years.

LCA: Calculation rules

Declared unit:

1 pcs FK2-EU

Cut-off criteria:

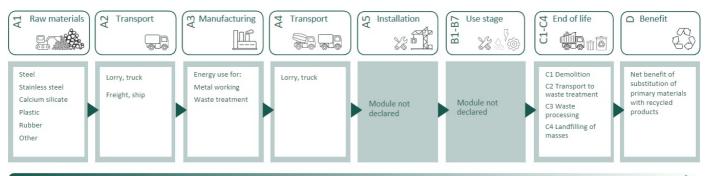
All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Energy, water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.


Materials	Source	Data quality	Year
Chemical	ecoinvent 3.6	Database	2019
Fire-, heat- and UV-stabilizers	ecoinvent 3.6	Database	2019
Metal - Stainless steel	ecoinvent 3.6	Database	2019
Metal - Steel	ecoinvent 3.6	Database	2019
Packaging - Pallet	ecoinvent 3.6	Database	2019
Packaging - Plastic	ecoinvent 3.6	Database	2019
Plastic	ecoinvent 3.6	Database	2019
Plastic - Polyamide	ecoinvent 3.6	Database	2019
Plastic - Polycarbonate (PC)	ecoinvent 3.6	Database	2019
Plastic - Polyethylene terephthalate (PET)	ecoinvent 3.6	Database	2019
Plastic - Polypropylene (PP)	ecoinvent 3.6	Database	2019
Rubber, natural (Latex)	ecoinvent 3.6	Database	2019
Rubber, synthetic	ecoinvent 3.6	Database	2019
Metal - Galvanized Steel	ecoinvent 3.6	Database	2020
Glass fibre reinforced plastic, polyamide	Modified ecoinvent 3.6	Database	2019
Motor	Modified ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Р	roduct stag	ge		uction on stage				End of life stage			Beyond the system boundaries					
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refu <i>r</i> b ishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Х	Χ	Χ	Χ	MND	MND	MND	MND	MND	MND	MND	MND	Χ	Χ	Χ	Χ	X

System boundary:

Cradle Gate Grave

Additional technical information:

Nominal sizes 200 x 100 - 1500 x 800 mm, can be ordered in increments of 1 mm.

Low differential pressure and sound power level.

Explosion-proof construction (ATEX) as an option.

Optionally available as an upstream shutter of an air transfer unit.

Can also be used as an air transfer damper.

Optional stainless steel casing or powder-coated casing for increased corrosion protection.

Optionally available with thermal insulation to prevent condensation.

Integration into the central BMS with TROXNETCOM.

Universal installation options.

Optional equipment and accessories:

Electric actuator 24 V/230 V.

Release temperature 72/95 °C.

Useful additions:

Duct smoke detectors.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	800	0,043	l/tkm	34,40
De-construction demolition (C1)	Unit	Value			
Demolition of building per kg of ventilation product (kg)	kg/DU	8,51			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	50	0,043	l/tkm	2,15
Waste processing (C3)	Unit	Value			
Materials to recycling (kg)	kg	6,65			
Waste treatment per kg Bulk iron waste, excluding reinforcement, sorting plant (kg)	kg	1,20			
Waste treatment per kg Hazardous waste, incineration (kg)	kg	0,04			
Waste treatment per kg Plastics, incineration (kg)	kg	0,07			
Waste treatment per kg Polyethylene terephthalate (PET), incineration with fly ash extraction (kg)	kg	0,02			
Waste treatment per kg Polypropylene (PP), incineration (kg)	kg	0,00			
Waste treatment per kg Rubber, municipal incineration with fly ash extraction (kg)	kg	0,01			
Disposal (C4)	Unit	Value			
Landfilling of ashes from incineration of Plastics, process per kg ashes and residues (kg)	kg	0,00			
Landfilling of ashes from incineration of Polyethylene terephthalate (PET), process per kg ashes and residues (kg)	kg	0,00			
Landfilling of ashes from incineration of Polypropylene (PP), process per kg ashes and residues (kg)	kg	0,00			
Landfilling of ashes from incineration of Rubber, municipal incineration with fly ash extraction (kg)	kg	0,00			
Landfilling of ashes from incineration per kg Hazardous waste, from incineration (kg)	kg	0,01			
Waste treatment per kg Copper slag, to landfill, residual material landfill (kg)	kg	0,02			
Waste, aluminium, to landfill (kg)	kg	0,01			
Waste, hazardous waste, to average treatment - A3, inkl. transp. (kg)	kg	0,04			
Waste, hazardous waste, to landfill (kg)	kg	0,90			
Waste, plastic, mixture, to landfill (kg)	kg	0,09			
Waste, scrap steel, to landfill (kg)	kg	0,71			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of electricity (MJ)	MJ	0,03			
Substitution of primary aluminium with net scrap (kg)	kg	0,10			
Substitution of primary copper with net scrap (kg)	kg	0,07			
Substitution of primary steel with net scrap (kg)	kg	1,95			
Substitution of thermal energy, district heating (MJ)	MJ	0,48			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Environ	mental impact								
	Indicator	Unit	A1-A3	A4	C1	C2	C3	C4	D
	GWP-total	kg CO ₂ -eq	3,81E+01	2,09E+00	1,12E-02	1,31E-01	3,00E-01	2,35E-01	-3,22E+00
	GWP-fossil	kg CO ₂ -eq	3,75E+01	2,09E+00	1,12E-02	1,31E-01	2,99E-01	2,33E-01	-3,20E+00
	GWP-biogenic	kg CO ₂ -eq	5,46E-01	8,66E-04	2,10E-06	5,41E-05	2,17E-04	2,27E-04	-5,99E-03
	GWP-luluc	kg CO ₂ -eq	4,81E-02	7,45E-04	8,84E-07	4,65E-05	2,41E-05	1,74E-03	-1,77E-02
Ö	ODP	kg CFC11 -eq	3,21E-06	4,74E-07	2,43E-09	2,96E-08	1,06E-08	1,43E-08	-2,04E-04
(E)	АР	mol H+ -eq	3,86E-01	6,01E-03	1,17E-04	3,76E-04	1,56E-04	9,95E-04	-4,60E-02
	EP-FreshWater	kg P -eq	2,59E-03	1,67E-05	4,09E-08	1,04E-06	2,11E-06	9,30E-06	-3,65E-04
	EP-Marine	kg N -eq	4,54E-02	1,19E-03	5,18E-05	7,44E-05	3,86E-05	2,19E-04	-4,17E-03
-	EP-Terrestial	mol N -eq	1,06E+00	1,33E-02	5,69E-04	8,32E-04	4,20E-04	2,24E-03	-4,96E-02
	POCP	kg NMVOC -eq	1,63E-01	5,10E-03	1,56E-04	3,19E-04	1,13E-04	1,05E-03	-1,86E-02
	ADP-minerals&metals ¹	kg Sb -eq	2,29E-02	5,78E-05	1,72E-08	3,61E-06	3,37E-07	1,26E-06	-2,01E-04
	ADP-fossil ¹	MJ	5,01E+02	3,16E+01	1,54E-01	1,98E+00	3,90E-01	2,39E+00	-3,07E+01
<u>%</u>	WDP ¹	m ³	2,56E+03	3,06E+01	3,28E-02	1,91E+00	3,14E+00	2,77E+00	-3,76E+02

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Additional	Additional environmental impact indicators												
I	ndicator	Unit	A1-A3	A4	C1	C2	C3	C4	D				
	PM	Disease incidence	3,61E-06	1,28E-07	3,11E-09	8,01E-09	2,06E-09	1,81E-08	-2,99E-07				
	IRP ²	kgBq U235 -eq	2,03E+00	1,38E-01	6,62E-04	8,64E-03	1,94E-03	4,24E-03	-4,25E-02				
4	ETP-fw ¹	CTUe	1,77E+03	2,35E+01	8,44E-02	1,47E+00	2,13E+00	1,09E+01	-4,04E+02				
48.* *** 2	HTP-c ¹	CTUh	1,86E-07	0,00E+00	0,00E+00	0,00E+00	9,20E-11	1,35E-09	-1,64E-08				
& D	HTP-nc ¹	CTUh	2,83E-06	2,56E-08	7,70E-11	1,60E-09	8,24E-10	3,70E-08	-1,29E-07				
	SQP ¹	dimensionless	1,30E+03	2,21E+01	1,96E-02	1,38E+00	1,55E-01	6,03E+00	-5,15E+00				

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use									
li	ndicator	Unit	A1-A3	A4	C1	C2	C3	C4	D
	PERE	MJ	1,18E+02	4,53E-01	8,35E-04	2,83E-02	7,30E-02	7,79E-01	-6,34E+00
	PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
T,	PERT	MJ	2,15E+02	4,53E-01	8,35E-04	2,83E-02	7,30E-02	7,79E-01	-6,34E+00
	PENRE	MJ	4,98E+02	3,16E+01	1,54E-01	1,98E+00	3,91E-01	2,39E+00	-3,07E+01
. La	PENRM	MJ	5,72E+00	0,00E+00	0,00E+00	0,00E+00	-6,84E-01	0,00E+00	0,00E+00
I	PENRT	MJ	5,02E+02	3,16E+01	1,54E-01	1,98E+00	-2,94E-01	2,39E+00	-3,07E+01
	SM	kg	5,19E+00	0,00E+00	7,58E-05	0,00E+00	1,32E-05	1,94E-02	5,13E-02
2	RSF	MJ	2,36E+00	1,62E-02	2,06E-05	1,01E-03	1,61E-03	2,03E-03	8,09E-02
	NRSF	MJ	1,00E+01	5,79E-02	3,02E-04	3,62E-03	1,41E-05	1,73E-01	2,26E+00
⊗	FW	m ³	4,28E-01	3,38E-03	7,95E-06	2,11E-04	4,24E-04	1,41E-03	-3,09E-02

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; PENRM = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste									
Inc	dicator	Unit	A1-A3	A4	C1	C2	C3	C4	D
	HWD	kg	3,15E-01	1,63E-03	4,55E-06	1,02E-04	1,53E-06	9,21E-01	-9,51E-03
Ū	NHWD	kg	1,23E+01	1,54E+00	1,83E-04	9,62E-02	3,70E-02	8,39E-01	-1,22E+00
3	RWD	kg	1,87E-03	2,15E-04	1,07E-06	1,35E-05	1,55E-07	7,91E-07	-4,11E-05

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flo	End of life - Output flow											
Indicat	or	Unit	A1-A3	A4	C1	C2	C3	C4	D			
@D	CRU	kg	0,00E+00									
&D	MFR	kg	1,29E+00	0,00E+00	7,45E-05	0,00E+00	6,65E+00	8,07E-03	-2,01E-03			
DØ	MER	kg	1,54E-03	0,00E+00	2,31E-07	0,00E+00	6,32E-02	3,68E-06	-2,64E-04			
5₽	EEE	MJ	3,03E-02	0,00E+00	7,92E-07	0,00E+00	3,19E-02	2,69E-05	-6,48E-04			
DØ	EET	МЈ	4,59E-01	0,00E+00	1,20E-05	0,00E+00	4,83E-01	4,06E-04	-9,80E-03			

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content										
Unit	At the factory gate									
kg C	0,00E+00									
kg C	0,00E+00									
	kg C									

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
Electricity, market mix (kWh) - Germany	ecoinvent 3.6	585,93	g CO2-eq/kWh

Dangerous substances

The product contains no substances on the REACH Candidate list at or above 100 ppm, 0,01 % by weight.

Indoor environment

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products										
Indicator	Unit	A1-A3	A4	C1	C2	C3	C4	D		
GWPIOBC	kg CO ₂ -eq	3,81E+01	2,09E+00	1,12E-02	1,31E-01	3,00E-01	3,16E-02	-4,15E+00		

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Graafland and Iversen (2022) EPD generator for NPCR 030 Ventilation components, Background information for EPD generator application and LCA data, LCA.no report number: 12.22

NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge.

NPCR 030 Part B for Ventilation components, Ver. 1.0, 18.05.2021, EPD Norway.

	epd-norway	Program operator and publisher	Phone:	+47 23 08 80 00
		The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
	Global Program Operator	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
	TROK®TECHNIK The art of handling air	Owner of the declaration:	Phone:	+49 2845 2020
		TROX Group	e-mail:	productsustainability- de@troxgroup.com
		Heinrich-Trox-Platz 1, 47506 Neukirchen-Vluyn	web:	https://www.trox.de/en
	LCA.	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
		LCA.no AS	e-mail:	post@lca.no
		Dokka 6B, 1671	web:	www.lca.no
	LCA ^N	Developer of EPD generator	Phone:	+47 916 50 916
		LCA.no AS	e-mail:	post@lca.no
		Dokka 6B,1671 Kråkerøy	web:	www.lca.no
	ECOPLATFORM	ECO Platform	web:	www.eco-platform.org
	VERIFIED	ECO Portal	web:	ECO Portal